MATH4060 Solution 1

February 2023

Exercise 1

(a) The assumption $\hat{f}(\xi)=0$ for all $\xi \in \mathbb{R}$ implies that

$$
A(\xi)-B(\xi)=e^{2 \pi i \xi t} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i \xi x} d x=0
$$

(b) Consider A defined on the upper half plane. Note that for $z=u+i v, v>0$, and $x \leq t$, we have

$$
\left|f(x) e^{-2 \pi i z(x-t)}\right|=|f(x)| e^{2 \pi v(x-t)} \leq|f(x)|
$$

By the moderate decrease of $f, A(z)$ is well-defined and bounded. To see that A is holomorphic on the upper half plane, we argue as in Theorem 3.1: define $A_{n}(z)=$ $\int_{-n}^{t} f(x) e^{-2 \pi i z(x-t)} d x$ and observe that $A_{n} \rightarrow A$ uniformly because $\left|A_{n}(z)-A(z)\right| \leq$ $\int_{-\infty}^{-n}|f(x)| d x$ and f has moderate decrease. Each A_{n} is holomorphic by Theorem 5.4 of Chapter 2 and so is the uniform limit A.

Similarly, B is holomorphic and bounded on the lower half plane. Part (a) and the symmetry principle (Theorem 5.5 of Chapter 2) imply that F is entire and bounded, hence a constant. In fact this constant is 0 , since the boundedness of f implies that (on the upper half plane)

$$
|A(u+i v)| \leq C \int_{-\infty}^{t} e^{2 \pi v(x-t)} d x=\frac{C}{2 \pi v}
$$

so that $A(z) \rightarrow 0$ as $\operatorname{Im}(z) \rightarrow \infty$.
(c) The first statement follows from $F(0)=0$ and the second from the continuity of f.

Exercise 3

Consider the function $f(z)=\frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi}$ having simple poles at $z= \pm a i$ with residue $\pm(2 i)^{-1} e^{ \pm 2 \pi a \xi}$. When $\xi \geq 0$, consider the contour from $-R$ to R along the real axis and then from R to $-R$ along the semicircular $\operatorname{arc} C_{R}^{-}$in the lower half plane. Along the $\operatorname{arc} z=R e^{i \theta}($ with $\operatorname{Im}(z)<0$ and assume $R>a)$,

$$
|f(z)|=\frac{a}{\left|a^{2}+z^{2}\right|} e^{2 \pi \operatorname{Im}(z) \xi} \leq \frac{a}{R^{2}-a^{2}}
$$

So $\int_{C_{R}^{-}} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$. Because the contour is clockwise oriented, the residue theorem implies that

$$
\int_{-\infty}^{\infty} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} d x=-2 \pi i \operatorname{res}_{z=-a i} f=\pi e^{-2 \pi a \xi}=\pi e^{-2 \pi a|\xi|}
$$

The case $\xi<0$ is similar and uses the semicircular contour on the upper half plane. The second statement of the question is by direct integration.

Exercise 7

(a) We first compute $\hat{f}(\xi)$ using residue theorem. Consider the function $g(z)=(\tau+$ $z)^{-k} e^{-2 \pi i \xi z}$, with an order k pole at $z=-\tau$ (in the lower half plane) with

$$
\operatorname{res}_{z=-\tau} g=\left.\frac{1}{(k-1)!}\left(\frac{d}{d z}\right)^{k-1} e^{-2 \pi i \xi z}\right|_{z=-\tau}=\frac{(-2 \pi i \xi)^{k-1}}{(k-1)!} e^{2 \pi i \xi \tau}
$$

Similar to exercise 3, for $\xi>0$, consider the semicircular contour in the lower half plane. Since $k \geq 2$, the same argument shows that $\int_{C_{R}^{-}} g(z) d z \rightarrow 0$ as $R \rightarrow \infty$, and thus the residue theorem gives

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} \frac{e^{-2 \pi i \xi x}}{(\tau+x)^{k}} d x=-2 \pi i \operatorname{res}_{z=-\tau} g=\frac{(-2 \pi i)^{k}}{(k-1)!} \xi^{k-1} e^{2 \pi i \xi \tau}
$$

For $\xi \leq 0$, the same argument in the upper half plane shows that $\hat{f}(\xi)=0$ because the contour does not enclose the pole. The desired identity is now a direct consequence of the Poisson summation formula.
(b) Apply (a) with $k=2$. Note that $\left|e^{2 \pi i \tau}\right|<1$ since $\operatorname{Im} \tau>0$, so we have the following identity (viewing as a function of τ):

$$
\begin{aligned}
\sum_{m=1}^{\infty} m e^{2 \pi i m \tau} & =\left(\frac{1}{2 \pi i} \sum_{m=0}^{\infty} e^{2 \pi i m \tau}\right)^{\prime}=\left(\frac{1}{2 \pi i\left(1-e^{2 \pi i \tau}\right)}\right)^{\prime} \\
& =\frac{e^{2 \pi i \tau}}{\left(1-e^{2 \pi i \tau}\right)^{2}}=\frac{1}{\left(e^{-\pi i \tau}-e^{\pi i \tau}\right)^{2}}=-\frac{1}{4 \sin ^{2}(\pi \tau)}
\end{aligned}
$$

(c) Yes, because both sides are meromorphic functions on \mathbb{C} that have the same poles and agree on the upper half plane.

Exercise 10

Let $l>0$. First note that for $z=x+i t$ and $\zeta=\xi+i \eta \in S_{l}$ (i.e. $|\eta|<l$), we have

$$
\begin{align*}
\left|f(z) e^{-2 \pi i z \zeta}\right| & =|f(x+i t)| e^{2 \pi(x \eta+t \xi)} \leq c e^{-a x^{2}+2 \pi x \eta} e^{b t^{2}+2 \pi t \xi} \tag{1a}\\
& \leq c e^{-a x^{2}+2 \pi l|x|} e^{b t^{2}+2 \pi t \xi} \leq c_{1} e^{-\tilde{a} x^{2}} e^{b t^{2}+2 \pi t \xi} \tag{1b}
\end{align*}
$$

for any $0<\tilde{a}<a$ and some constant c_{1} independent of x and $\zeta \in S_{l}$ (but dependent on $a, \tilde{a}, l)$. Similar to Theorem 3.1, observe that $\hat{f}(\zeta)$ is holomorphic in every S_{l} : let $\hat{f}_{n}(\zeta)=$ $\int_{-n}^{n} f(x) e^{-2 \pi i x \zeta} d x$, each holomorphic by Theorem 5.4 of Chapter 2. Equation (1b) with $t=0$ and the integrability of $e^{-\tilde{a} x^{2}}$ imply that $\left|\hat{f}_{n}(\zeta)-\hat{f}(\zeta)\right| \leq c_{1} \int_{|x| \geq n} e^{-\tilde{a} x^{2}} d x \rightarrow 0$ uniformly in $\zeta \in S_{l}$, as $n \rightarrow \infty$. So \hat{f} is holomorphic by Theorem 5.2 of Chapter 2 .
Next, with ζ fixed, we show that the contour of integration can be changed to $\{\operatorname{Im}(z)=$ $y\}$ for any fixed $y \in \mathbb{R}$, i.e. we have

$$
\begin{equation*}
\hat{f}(\zeta)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \zeta} d x=\int_{-\infty}^{\infty} f(x+i y) e^{-2 \pi i(x+i y) \zeta} d x \tag{2}
\end{equation*}
$$

(The integrals on both sides are well-defined by (1b).) To prove (2) when $y \neq 0$, consider the entire function $f(z) e^{-2 \pi z \zeta}$ and the rectangular contour defined by the vertices $-R, R, R+i y,-R+i y$. As in the proof ${ }^{1}$ of Theorem 2.1, it suffices to show that the integrals along the vertical segments of the contour tends to 0 as $R \rightarrow \infty$. By (1b), along the left vertical segment, we have

$$
\left|\int_{0}^{y} f(-R+i t) e^{-2 \pi i(-R+i t) \zeta} d t\right| \leq C e^{-\tilde{a} R^{2}} \rightarrow 0
$$

[^0]as $R \rightarrow \infty$. And the same holds for the right vertical segment. This proves (2).
Finally, we estimate $|\hat{f}(\zeta)|$ using the shifted contour: by (1a), we have
\[

$$
\begin{aligned}
|\hat{f}(\zeta)| & \leq c e^{b y^{2}+2 \pi y \xi} \int_{-\infty}^{\infty} e^{-a x^{2}+2 \pi x \eta} d x \\
& =c e^{b y^{2}+2 \pi y \xi} e^{b^{\prime} \eta^{2}} \int_{-\infty}^{\infty} e^{-a\left(x-\sqrt{b^{\prime} / a} \eta\right)^{2}} d x \\
& \leq c^{\prime} e^{b y^{2}+2 \pi y \xi} e^{b^{\prime} \eta^{2}}
\end{aligned}
$$
\]

where $b^{\prime}>0$ is obtained by completing square (and is independent of η); while c^{\prime} is some constant also independent of $\zeta=\xi+i \eta$. Consider a sufficiently small $d>0$ so that $a^{\prime}:=2 \pi d-b d^{2}>0$, and then take $y=-d \xi$ in the above to obtain the desired estimate

$$
|\hat{f}(\zeta)| \leq c^{\prime} e^{-a^{\prime} \xi^{2}+b^{\prime} \eta^{2}}
$$

[^0]: ${ }^{1}$ In fact, if $\eta=0$, we could just apply the proof in Theorem 2.1.

